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Abstract. In this paper, we propose a novel method for robustly characterizing
and classifying visual concepts, and more preciscly for detecting  several
categories of complex objects in images. Toward this aim, we propose a scheme
that relics on Adaptive-Subspace Self-Organizing Maps (ASSOMs). Robust local
signatures are first extracted from training object images and projected into
specialized ASSOM networks. The extracted local signatures activate several
ncural maps producing activation energies. These activation energies are then
fused into global feature vectors representing the object images.  Object
recognition is then performed via a supervised SVM (Support Vector Machine)
classification. A multiscale scarch approach completes the system in order to
obtain the object localization and identification in complex scenes. The proposed
mcthod allows a good detection rate of 85.08% for the PASCAL 2005 challengel,
composed of 689 complex real world images, containing four different objects
undergoing strong variations in shapes, sizes, poses and illumination conditions.

1. Introduction

According to several psycho-visual experiments [1]. the human vision system performs
saccadic eyc movements between salient locations to capture image content. Many
systems in computer vision are inspired by this observation, in order to describe visual
information for image classification or retrieval. In opposition to global approaches, for
which a signature is computed by considering all pixels in the image, local approaches
represent image content via a set of local signatures centered on interest points (IP) [2—
4]. which are extracted on perceptually important areas.

Tversky studies [5] showed that when we compare two images. we detect common
and distinct concepts between the regions around the IPs. Our method aims at
reproducing these concepts with a codebook learning strategy based on ASSOM
activation maps for cach category. Visual similarity is then estimated by the distance
between different activation histograms.

Our method has been experimented in the context of an object detection task
where the good detection rate reaches 85.08% for 689 complex real world images,
from the Pascal 2005 Challenge', containing four different object categorics.

: http://www.pascal-network.org/challenges/VOC/voc2005
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This paper is organized as follows. In Section 2, we first present our objecy
detection scheme based on ASSOM activation energies. Then. §ccuon 3 dcm(_)nslmlcs
our system performances with some experimental results. Finally, conclusions are

drawn.

2. Object Detection Based on ASSOM Energies

2.1. Proposed Scheme Overview

As outlined by R.O. Duda [6]. a classification scheme is generally c9mpo§cd of three
main steps: pre-processing. feature extraction and feature classification. In the
proposed study. we mainly focus on the two first steps. the last step being performed

by a SVM classifier.
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Fig. 1. The Proposed System Architecture.
Our system architecture consists of six steps in the learning phase (see Figure 1):

We first locate the salient zones with an IP detector [2] mainly on sharp region
boundaries.

Local visual features are then extracted in order to describe the orientation and
the regularity of the singularities contained in the different patches around
cach detected 1P,
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— Visual feature vectors are fed into specialized ASSOM networks to
characterize the main visual prototypes via neural activation maps. These
maps synthesize the activation energies for each category.

—  Activation energies are represented by activation histograms for each class.

—  These histograms are concatenated to build the image global feature vector.

- Finally, a SVM classifier is trained in a supervised way from these
discriminative global feature vectors.

2.2 Regularity Foveal Descriptor

Most local descriptors represent the neighborhood around salient points by
characterizing edges in this area [7). To describe edges, gradient orientations and
magnitudes are generally used. In a recent study [8). it has been shown that an edge or
more generally a singularity can also be efficiently characterized by considering its
Holder exponents.

Definition 1. f:[a.b] — R is Hilder o >0 at vy R if 3K > 0.6 >0 and a
polunone Poof degree m = |of: Yo xg =8 < 0 < ry = 8. |f(r) — P(r — xy)| <
K|r — xrof”.

Definition 2. The Hilder cxponenl hy(roy of [ et wg is the superior bound
calue of all a. hy(xg) = sup{a. fis Hilder a at ry).

The local regularity of a function at a point x, is thus measured by the value hy(xo). Itis
worth noting that the smaller //(xo) is, the more singular the signal is. For example, the
Holder exponent is 1 for a triangle function, 0 for a step function and —1 for a Dirac
impulse.

To describe an ROI associated to an interest point in an image /, . both orientation
and Hélder regularity of singularities are characterized. The Holder exponent is
estimated in the gradient direction. For this purpose, orientation ¢(x,y) and gradient
magnitude m(x,y) are computed at each pixel (x,y) :

m(r. y)? = (e + Ly = T{r- 1.y))?
+ g+ 1) = Iy = 1))? (1

Dixap+1)-0,(s.y—1)
A(r.y) = tan l(—_——/,u-'l.-u~l,u-l|_.,;)

Then, for cach singularity, the Holder exponent a is estimated with foveal wavelets as
presented in [9). Orientations and Holder exponents maps are then conjointly used and
we approach their distribution with 3D histograms. To build such histograms. we
consider a 32x32 ROI around each IP that we split into 16 8x8 subregions and we
quantify the number of times each pair (a.0) appears in cach subregion (see Figure 2).
We use three Holder exponents bins into the range [-1.5, 1.5] and cight orientation
bins into [— A ;] All bins of each subregion 3D histogram are concatenated to form

the final signature : the Regularity Foveal Descriptor (RFD).
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Fig. 2. Orientations and Hélder exponents for a subregion. resulting in a 3D histogram.

2.3. ASSOM Learning Process

ASSOM is basically a combination of a subspace method and a competitive selection
and cooperative leaming as in the traditional SOM. introduced by Kohonen [10].
ASSOM differs from other subspace methods by permitting to generate a set of
topologically-ordered subspaces. Two units that are close in the map will represent two
feature subspaces closed in the global feature space. In ASSOM, the unit is composed
of several basic vectors that expand together a linear subspace. This unit is called
“module™ in an ASSOM neural network. This method aims at learning data features,
without assuming any prior mathematical forms of their representation, such as Gabor
or wavelet transforms. which are frequently encountered in the traditional image
analysis and pattern recognition techniques. In other words, the forms of the filter
functions are learned directly from the data. The input to ASSOM is a group of vectors,
called “episode™. The vectors in cach episode are supposed to be close according to
some affine transformation variations.
There are mainly two phases in the learning process with ASSOM:

1. For an input episode. locate the winning subspace from ASSOM modules.
2. Adjust the winning subspace and its neighbor modules in order to better
represent the input episode.

For a lincar subspace Lor dimensionality /1. one can find a set of basis vectors
{by; ba s by}, such that every vector in Ll can be represented by a linecar
combination of these basis vectors. Such sets of basis vectors are not unique. However
they are equivalent in the sense that they expand exactly the same subspace. For
computational convenicnce, the basis vectors are orthonormalized by the Gram-
Schmidt process. :
~The orthogonal projection of an arbitrary vector x onto the subspace L written as
X! is a linear combination of its orthogonal projections on the individual basis
vectors. and can be computed by:
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%e =) (x"by)by. 2)
h—1

If Xl =x. then x belongs to Y] otherwise we can define the distance from x to £l as

Ixc, | = lIxc.l . by using the Euclidean norm. When several subspaces exist. the
original space is partitioned into pattern zones and the decision surface between two
subspaces. for example Lyl and L2 is determined by those vectors x such that
I%c, || = I%c, il By comparing the distances of a vector to all the subspaces, we can
assign this vector to the nearest subspace.

In Kohonen's realization of ASSOM, the subspace is represented by a twolayered
neural architecture, as depicted in Figure 3. The neurons in the first layer compute the
orthogonal projections X bh'oflhc input vector x on the individual basis vectors by
The second layer is composed of a single quadratic neuron and computes the squared
sum from the outputs of the first layer neurons.

The output of the whole neural module is then X2l the square of the norm of
the projection. It can be regarded as a measure of the degree of matching of the input
vector X with the subspace L represented by the neural module. In the case of an
cpisode. the distances should be calculated from the subspace of the vectors in the
cpisode and the subspace of the module, which are generally difficult to compute.
Kohonen proposed another much casier but robust definition of subspace matching: the
energy: the sum of squared projections over the episode on a module subspace. This is
the energy that we use to build our activation histogram.

The classical Kohonen’s ASSOM learning algorithm proceeds as follows.

For the learning step 4,
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Fig. 3. Left: a rectangular ASSOM topology, a winning module ¢ and its
neighborhood. Right: the projection of x on Llby a module.

1. Feed the input episode x. composed of S vectors x(s), s € S. Locate the winning
module indexed by c:

¢ = argmax Z‘: IIxg (s)]I%. 3)
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where 7 is the set of indices of the neural modules in the ASSOM.

!J

For each module i in the neighborhood of ¢. including ¢ itself. and for each input
vector x(s). s € S. adjust the subspace L; by updating the basis vectors b(,:).

according to the following procedure:
(a) Rotate each basis vector according to:

b = PY(x.0b," . )

In this updating rule. bs:) is the new basis vector after rotation and b;(," the

old one. P‘("(x,l) is the rotation operator matrix, defined as:

x(«)x"(s)

ix. t)= N ) ———— .
Py = L A Gl )

where 1 is the identity matrix. A(7) a leaming-rate factor that decreases with
the leaming step 1. 11,(,‘)(1) is the neighborhood function defined on the
ASSOM lattice with a support area shrinking with 1.

(b) Dissipate the components b,(,;) of the basis vectors bY) to improve the

~

stability of the results [10]:
l»;_'l(” = hull‘_’);:l')lll.'lxll‘. ”'lhl,ll —2). (6)

where ¢ is the amount of dissipation. chosen proportional to the magnitude
of the correction of the basis vectors.
(c) Orthonormalize the basis vectors in module i.

2.4. Final Feature Vector Construction

The proposed architecture contains one ASSOM for each category. producing specific
ASSOM units for different patches. This idea was explored in [11] for the recognition
of handwritten digits and produced promising results. In this case. the image size was
small (25 x 20 pixels) allowing a straightforward learning of all pixels through
ASSOM. 10 ASSOMs were used, one trained for cach category of handwritten digits.
For digit classification, a test digit is sent simultaneously to all the 10 ASSOMs. which
output 10 reconstruction error values. The ASSOM with the smallest reconstruction
error determines the digit category. An obvious limitation here is that there is no
interaction between the different ASSOMs during the learning phase. An ASSOM
Jearns the features of its own category. however it does not learn how to separate them
from the other categories. The optimum decision surface is thus not guaranteed.

In our context, the images to analyze are much larger and complex. Therefore, we
decide to use a local approach by extracting image patches at salient locations. Our
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strategy is thus to build a visual dictionary for each class from the activation of
different ASSOMS. Other studies [12-16] are interesting regarding the crcu(io.n of
codebooks or bags of keypoints. Here. our object approach focuses on the pertinent
image areas.
To construct the feature vector Hr from the object 7| l we proceed as follows (see
Figure 1 for notations). 3
- We select the interest points with the strongest salience from the image I].
- For cach patch:
> We compute the local signature with the RFD descriptor (see 2.2).
= We build an episode for the local signature by applying some artificial affine
transformations.
* For cach episode vector:
*J specialized ASSOM networks receive a signature and compute an

et
cnergy ”xkj”_ defined by:

N ' 2 v
5601 = i i, I - E
. 1

where J; is the module index set of the j ASSOM. J is the number of

category. ”x‘v.i ”') is the maximal value of the square of the norm of the
projection of x; on the linear subspaces of the j ASSOM.

Each activation histogram h, corresponding to each network is ll}cn
updated. The maximal output energy increments the corresponding
histogram bin, as follows.

[N+ 1) = B[ + 1% )1 ®

- 13 ne
with ¥ = argmaXie,, %kl 54 is the time.

- Each energy histogram h,. computed from all patches. is fused into a .globa{
activation histogram Hz_ This final feature vector is then the concatenation of
the individual ASSOM energy histograms. This discriminalivc‘ object
information is finally introduced to a SVM classifier for supervised training.

2.5. Object Detection by multi-resolution

The visual concept learning process is tuned on normalized object samples. Thus, the
classification procedure consists of an object search. This search is made by a fixed
size sliding window in a multi-scaled image pyramid.

Here, the object detection is realized on three pyramid levels and the window
moves with a step of the half of its width (see Figure 4).

For cach image extracted inside the sliding window. we observe the SVM outputs.
When the classifier recognize a learned object. the corresponding area is marked in a
voting map. The vote weight is proportional to the SVM output given that the output i
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of the SVM classifier represents the a posteriori probability of an object of bclonging

P

i

to class Ci.

Fig. 4. Scaling pyramid and its moving window.

ses the different vote intensities in order to locate the object. This
cale vote intensities in the original dimension (see Figure
didate areas where the sum of multiscale votes is upper
when one of the SVM outputs is greater than
levant. Then. a final classification refines

A last step fu
procedure clusters the multi-s
5). Thus. we locate some can
than a decision rule threshold. Typically.
0.9. we consider the corresponding area as re
the results in the merged areas.

3. Experimental results

We tested the proposed scheme on the challenge PASCAL 20051 database. The goal is
to classify 689 images using 684 training labeled objects of four different classes:
bicycle. car. motorbike and people.

The local signatures are extracted around the IPs within 32x32 rectangular patches.
The RED descriptor is computed within 16 subregions of these patches. 8 orientation
bins and 3 H-older exponent bins for all patches. Therefore. the RFD dimension is
16x8x3=384.

For all experiments, we configure our ASSOM networks with the following rules
for optimal performance in terms of accurate data representation:

— the number of training epochs is : 7'= 500 x N;

— the learning rate forms a monotonically decreasing sequence: Ar)= A :
( ) T+991
L r—r <pu\
— the neighborhood function is defined by: h(i) — o0 /l( )
0,otherwise.

Here. we choose the cuclidean norm and r, is the 2D position of the i ASSOM
module. u(1) specifies the neighborhood width which decreases linearly with ¢ from

2
TN 100.5.
2

L
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The Area Under Curve (AUC) and the confusion matri
system with the best configuration are shown in Table 1. The best-classified category is
“cars™: 92.39% are correctly detected. The worst case happened to be the people
category. This can be explained by the large variety of textures. colors and shapes in
this cluster.

ix of the image classification

Table 1. Confusion matrix and AUCs. (B=Bicycle. C=Car. M=Motorbike. P=People)
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Fig. 5. Good and false classifications. Voting maps for a bicycle image.

Some correctly classified examples are shown in Figure 5. We can observe that a
bicycle object stimulates strongly the bicycle-voting map. Moreover. the motorbike-
voting map is lightly activate. which demonstrates the genceralization power of the
proposed system.
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Fig. 6. Results on PASCAL 2005 database with architecture and descriptor variations.
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This multi~-ASSOM architecture offers a better global classification rate (85.08%,
than a single ASSOM (76, 81%) for all test classes. The best configuration for ap
ASSOM network is : N=20x20, M=2 (sce Figure 6). It is worth noting that the globa]
classification rate for the training database reaches 100% for our multi-ASSOM
scheme. and only 89.96% for the single ASSOM scheme.

It is also interesting to compare the performances when using different descriptors,
With the same configuration. the RFD descriptor provides better results than the SIFT
descriptor or some MPEG-7 descriptors. Consequently, we can see l.ha'l the ASSOM
competition with the RFD dcscripl~or allows us to construct more discriminative feature

vectors for the SVM classification”.

4. Conclusion

This article describes a new system to detect visual concepls, using singularity
information contained in the salient regions of interest. Based on the threec main
properties of ASSOM - which are dimension reduction, topology preservation and
invariant feature emergence - our scheme give very promising results to detect objects
with a SVM classifier.

We plan to study the fusion of heterogencous descriptors with feature sclection to
learn useful object information, and to develop a growing strategy to find the optimal
ASSOM parameters.
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